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@ Overview and Motivation



Regularized Optimization Problem

Consider the following regularized optimization problem:

min F(z) = f(x) + ¥(z), (REG)

xT

e f:R" — R: L-Lipschitz-continuously differentiable (L-smooth)
o U :R"” — R: convex, extended-valued, proper, and closed, but might be nonsmooth.

e Fis lower-bounded and the solution set Q2 of (REG) is non-empty.
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Inexact Successive Quadratic Approximation (ISQA)

At the tth iteration, with iterate 2!, find an update direction p’ by solving
¢ 1
p'~ argmin - Qf, (pia') = Vf (') d+ 5d"Hd+ ¥ (o' +d)~¥ (a') (SUBPROB)
PER™
for some symmetric and positive-semidefinite H,.
@ A stepsize o along p' is then decided for updating the iterate

@ Many existing algorithms included in this framework: proximal Newton (PN) when
H; = V?f(x'), proximal quasi-Newton (PQN), proximal gradient, and so on

@ Subproblem has no closed-form solution when H; is not diagonal: apply an iterative
solver to obtain an approximate solution

@ abbreviation: Q;(p) = Qﬁt(p; )
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Solution Inexactness

@ For PN and PQN, under suitable conditions, superlinear convergence in the number of
times updating z! can still be obtained

@ Similar to the smooth case (i.e. ¥ = 0): requires increasing solution accuracy of
(SUBPROB)

@ Unlike the smooth case: no closed-form or finite-termination solver (direct
inverse/matrix factorization/conjugate gradient) exists for (SUBPROB)

@ Superlinear convergence only in theory and in outer iterations, but not observed in real
running time
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Possible Remedy

o If U is partly smooth around a point z*, and the iterates converge to x*, then after
identifying the active manifold M > z* such that W | is smooth, we can switch to
smooth optimization

@ Partly smooth: function value is smooth along a manifold but changes drastically
along directions leaving the manifold

@ An algorithm identifies M if there is a neighborhood U > z* such that z! € U implies
xt—i—l c M

@ Call such an algorithm possesses the manifold identification property

e If (SUBPROB) is always solved exactly, it is known that the active manifold can be
identified

@ But due to the inexactness in subproblem solution, ISQA in general does not have the
manifold identification property
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ISQA Cannot Identify Active Manifold in General

Example 1

min (z; — 2.5)% + (22 — 0.3) + ||z]|1,
zeR?

@ U(-)=|| |1, the only solution is * = (2,0), and ||z||; is smooth relative to
M = {z | z2 = 0} around z*.

o Consider {z'} with 2} =2+ f(t), 2} = f(t), for some f(t) > 0 with f(¢) | 0,
H,=1,0,=1, and pt = ! — 1t

@ The subproblem optimum is p"* = 2* — z', so ||z* — z*|| = O(f(¢)) and
Ip" = ™ = O(f (1))

@ f is arbitrary, both the subproblem inexact solution and its corresponding objective
converge to the optimum arbitrarily fast, but ' ¢ M for all ¢

4

@ Interestingly, our numerical experience in Lee and Wright (2019); Lee et al. (2019); Li
et al. (2020) suggests the opposite: ISQA can identify the active manifold in practice
5

@ This discrepancy between theory and practice motivates this work



Our Contributions

@ Prove that ISQA essentially possesses the manifold identification property either
through the subproblem solver or a specific solution accuracy requirement (2nd one
skipped in this talk)

@ Strong convergence of the iterates under a mild growth condition (skipped in this talk)

@ Propose acceleration techniques to achieve superlinear convergence in running time
even without local strong convexity

@ Numerical result shows that our new algorithm ISQA™ greatly improves upon existing
PN and PQN methods
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© Preliminaries



Algorithm Details

@ Choice of H;: bounded and PD
dM,m >0, suchthat M > H; > m, Vt>D0. (BD+PD)
@ Inexact solution: consider
Qi(p") — mpin Qi(p) < e, (OBJ)
@ Step size: given v € (0, 1) find a; such that

F(a' + ap') < F(a') + anyQu(p') (Armijo)
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Algorithmic Framework

Algorithm 1: Framework of ISQA

input : 2% ~v,8 € (0,1)

fort=0,1,... do
oy < 1, pick ¢, > 0 and H;, and solve (SUBPROB) for p' satisfying (OBJ)
while (Armijo) not satisfied do «; < Sy
2t ot

Definition 2 (Partly smooth)

A convex function W is partly smooth at z* relative to a set M > z* if OW(z*) # () and:
@ Around z*, M is a C?-manifold and W], is C2.

@ The affine span of O¥(z*) is a translate of the normal space to M at z*.

© OV is continuous at z* relative to M.
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e Manifold ldentification of ISQA



|dentification from Subproblem Solver |

o Consider relative accuracy in (OBJ) for easier analysis:
nel0,1): e=n <Qt(0) — min Qt(p)> = —nmin Q(p), Vt. (Relative)
p p

e Easily satisfied by applying a linear-convergent solver to (SUBPROB) for a fixed
number of iterations

@ Define the proximal mapping: for any function g, 7 > 0, and A PD,

1
proxa,(z) == argmin 5(1’ —y, Mz —y)) +79(y)
)

@ p™ denotes the optimal solution to (SUBPROB) and Q7 := Q;(p™)



|dentification from Subproblem Solver Il

Consider a point x* satisfying

0 € relint (OF (z*)) = V f(x*) + relint (0¥ (z")) , (Nondegenerate)

with U partly smooth at x* relative to some manifold M. Assume f is locally L-smooth
for L > 0 around z*. If Algorithm 1 is run with (OBJ) and (Relative) for some
n € 10,1), and the update direction p' satisfies

P+ pt = proxy (' = A7 (VF () + Hi (o —at) +5)) . (Prow

where s' satisfies ||s'|| < R (||y* — (z* + p™)||) for some continuous and increasing R
with R(0) = 0, A; is symmetric and PD, with M, > ||A;|| for My > 0, and y' satisfies

(v = 2") — || < m (Qu(0) — @})"

for some v > 0 and 1, > 0, then there exists €,0 > 0 such that ||x' — z*|| < ¢,|Q;| <49,
and a; = 1 imply '+ € M.




Examples of Solvers Fitting (

Proximal Gradient (PG)

Accelerated PG

Prox-SAGA/SVRG

Proximal (Cyclic) Coordinate Descent (CD)

Almost all solvers used in practice satisfy (Prox), so ISQA essentially possesses the
manifold identification property
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@ Acceleration Through Manifold Identification



Algorithm Flow

The proposed algorithm ISQA™:
@ ISQA stage:
@ Solve (SUBPROB)

Q If (Armijo) fails then modify H; and resolve
@ If 2! stays within the same manifold for T iterations: switch to the smooth stage

@ Smooth stage:
© One iteration of Newton or quasi-Newton within the current manifold

@ One iteration of PG

© If the manifold changes after PG or the smooth step fails to decrease the objective, go
back to the ISQA stage
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Superlinear Convergence of ISQA™ Without Strong Convexity

@ Use ¢ : R™ — M, € R™ with ¢;(y') = z' to parameterize the current manifold, then
F,, == F(¢:(+)) is smooth

@ Apply a damping term to the Hessian: find ¢' the update direction for y' such that

Hyq' = —g', g' = VF(euly")), Ho=V?F (6:(y")) + pul, pe:=c||g[|” (Newton)

satisfying
|+ 5] < 0.1min { ]

gt||1+p} (Tolerance)

with pre-specified ¢ > 0 and p € (0, 1].
@ Apply (preconditioned) conjugate gradient to solve the problem

e Backtracking along ¢" for F,
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Superlinear Convergence

Consider a critical point x* of (REG) satisfying (Nondegenerate) at which U is partly
smooth relative to M with a parameterization ¢ and y* such that ¢(y*) = z*. Assume
V?2F, is PSD and Lipschitz continuous within a neighborhood U of y*, U is convex,
proper, closed, f is L-smooth. Then there is a neighborhood V' of x* such that if at the
toth iteration of ISQA™ for some t, > 0 a2 € V, we have entered the smooth stage, M
is correctly identified, and a; = 1 is taken in the Newton steps for all t > t,, we get the
following for all t > t,.

@ For p € (0,1] in (Newton) and (Tolerance) and F satisfying

Clly —y*|l < (Fy(y) — F (y*))?, Yy eU, withf =1/2 for some ¢ > 0:

) VR ) = 0 (I9Fs () ).

||.Tt+2 —x*

=0 (th —x*

@ For p=0.69 and F, satisfying the same sharpness condition for some ( > 0 and

0> 3/8, y
|lztt2 — z*|| = o (||zt = z*]|) .




© Numerical Results



Experiment Setting

@ (;-regularized logistic regression: domain R?,

U(x) = Allally, f(z) =) log (1 +exp (<bifai, 7)),

i=1
(A =1 in the experiments)

@ Algorithms to compare:

- LHAC (Scheinberg and Tang, 2016): an inexact proximal L-BFGS method with CD for
(SUBPROB) and a trust-region-like approach.

- NewGLMNET (Yuan et al., 2012): a line-search PN with a CD subproblem solver.
- ISQAT-LBFGS and ISQA™-Newton: our algorithm with the first stage using L-BFGS and

real Hessian for Hy, respectively
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Results
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Experiment Results

@ No clear winner among PN and PQN: depending on data
@ But our acceleration improves individual performance no matter which one is better

@ Although PN and PQN have superlinear convergence in terms of outer iterations, not
observed in running time

@ Superlinear convergence in running time clearly observed in our accelerated algorithms

Paper available at: Ching-pei Lee. Accelerating inexact successive quadratic
approximation for regularized optimization through manifold identification, 2020.
arXiv:2012.02522

Implementation for the experiment at: https://github.com/leepei/ISQA_plus )
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